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Introduction

One reason for the reront resurgence
of interest in neural network-like compu-
tational models has been the prospect of
compact and fast implementations of these
networks in integrated circuit form.
While analog implementations offer con-
siderable advantages with regard to speed
. and density, their precision and noise
immunity are important concerns. Some
researchers (e.g., Mead and cowolrkers)
have built analogues of biological struc~
tures for early sensory processing, and
they have emphasized that tolerance of
noisy and imprecise components is a nat-
ural emergent feature of these networks.
However, the ways in which "higher" or
"cognitive" functions might be learned
and computed with such components for the
most part remains unknown. In addition,
learning itself remains problematic in
analog circuitry. Means proposed for
long-term, modifiable analog weight stor-
age (e.qg., floating-gate MOS devices) are
sensitive, difficult to control, and of
limited precision.

We have chosen to implement a model
of olfactory processing proposed by
Granger, Lynch, and Ambros-Ingerson,
which we believe to be an instructive
paradigm for computation in a 1learning
system with 1ow-frecision weights and
weight changes.l' The model has been
shown capable of performing a heirarch-
ical clustering of vectors on its input
space. This capability is of potential
interest for a range of applications,
from automatic target recognition (ATR)
to surveillance and detection. The net-
work requires only coarse-valued weights
(three to five bits resolution) and its
operation relies on the statistical prop-~
erties of large assemblages of sparsely
interconnect:l ..cureri, ratuer than high
precision processing. In addition,
clustering capability is acquired by an
unsupervised coactivity-based learning
rule that requires only increments and
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admits a simple parallel implementation.
The fact that the network can learn to
extract structure from its input environ-
ment in an unsupervised fashion 1is of
general interest for the a«dvancement of
autonomous or "smart" systems with a
broad range of defense and space applica-
tions.

The Model

The interested reader is referred to
the work of Granger et al. for details of
the olfactory model.l/2  Herein we give
an abbreviated, gualitative summary of
the model in engineering terms. The

. system accepts a vector input with com-

ponents of 1like algebraic sign. This
input is subject to a form of normaliza-
tion which constrains total sum-magnitude
of the processed signals to on the order
of 20% of maximum. Each normalized conm-~
ponent is then "thermometer-cocded," or
quantized and represented by the number
of active two-state cells within a group
("glomerulus®) of such cells associated
with that component. The outputs of
these ("mitral®) cells project via a
randomly interconnected, sparse (i.e., on
the order of 10% full) weight matrix to
a second set of (“piriform") cells, which
are arranged in winner-take-all subnet-
works. The most strongly stimulated
piriform cell in each subnetwcrk activ-
ates, and the sparse pattern of activity
of the piriform cells represents the
output of the system.

The active piriform cells subsequent-
ly send inhibitory feedback to the glo-
meruli via correlationalliy-developed
(Hebbian) interconnections, so that inhi-
bition is strongest for those input com-
ponents most responsible for the piriform
sucavation. The input is resampled,
combined with this inhibition, and re-
normalized, resulting in a pattern of
mitral activity in which initially large
components are squelched and secondary
components are expressed more strongly.
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The new pattern of mitral activity is fed
forward to the piriform cells and results
in a new pattern of piriform activity.
This cycle is typically repeated a nunber
of times.

When the system is in the learning
mode, the weights of interconnections
between active mitral and winning piri-
form cells are incremented at each cycle
of activity. As a consequence of this
learning, the piriform output codes for
input vectors which are sufficiently
similar, or clustered in the input space,
tend to develop a high degree of overlap
or become identical. In addition, with
the multiple sampling and feedback inhi-
bition, the inputs are clustered into
succeedingly finer subclusters or cate-
gories (indicated by identical or nearly
identical piriform output codes) based on
secondary and tertiary characteristics.

Implementation

We propose a direct analog CMOS im-
plementation of this model. This network
would operate synchronously with regard
to the resampling cycle required for
heirarchical clustering, with feedforward
and feedback subphases, However, compu-
tations of neuronal states would be ana-
log, asynchronous, and carried out in
parallel. cCurrent mode design techniques
have been employed. Floating-gate weight
storage and on-chip, parallel learning
are proposed.

The normalization regquired by the
model can be achieved with a circuit
analogous to vector automatic gain con-
trol, with saturating nonlinearity app-
lied to each component. Thermometer-
coding is performed by a circuit analog-
ous to the input stage of a parallel aA/D
converter. On the piriform side, winner-
take-all subnetworks are implemented
using circuits with global feedback. >

For "“synaptic" weights, we propose
the use of single floating-gate transis-
tors whose transconductance is modulated

by charge c¢n the floating gate. We
propose to implement the sparse, random
weight matrix with a one-to-one

correspondence of the number of weighting
elements to number of synapses in the
model, with mask-programmable connection
of input and output lines allowing estab-
lishment of pseudorandua cvohneclivity.

To implement feedback inhibition of
the bulb by the piriform, we propose a
time-duplex scheme. Because the correla~
tionally-developed feedback interconnec-
tions arise as a direct consequence of
the given feedforward connectivity, the
same inhibitory effect can be obtained by

using the transpose of the sparse weight
matrix to compute the inhibition. Physi-
cally, a single weight matrix would be
driven bidirectionally in two phases, to
successively compute both feedforward
excitation and feedback inhibition. To
allow this bidirectionality, interface is
made to the weight matrix via type-I1
current conveyors.?

For individual weights, the control
logic for the coactivity-based learning
rule corresponds to a simple AND func-
tion; taken in parallel it may be regard-
ed as a Boolean outer product. This can
be implemented on crossbars running
through the weight matrix using simple
switches which are controlled by the
neuron states and which route programming
voltages to writing circuitry for the
floating-gate weights.

The building-block circuits required
for the implementation described above
have been fabricated using the MOSIS and
Orbit Semiconductor Foresight prototyping
services. DC functionality was estab-
lished experimentally for most, with AC
or transient response estimated from
SPICE simulations. We present circuit
designs and test and simulation results
in poster illustrations, including re-
sults from a variety of candidates for
floating~gate weight circuits which were
fabricated in the standard processes. A
simple scheme to compensate for the
strong nonlinearity of the floating gate
charging mechanisms is described. Plans
for a network with on the order of 25,000
weights are also detailed.
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